Huggins, M. L. (1922a). J. Amer. Chem. Soc. 44, 1841.
Huggins, M. L. (1922b). Phys. Rev. 19, 363.
Huggins, M. L. (1922c). Phys. Rev. 19, 369.
Huggins, M. L. (1922d). Phys. Rev. 19, 346.
Huggins, M. L. (1926). Phys. Rev. 28, 1086.
Huggins, M. L. (1936a). J. Phys. Chem. 40, 723.
Huggins, M. L. (1936b). J. Org. Chem. 1, 407.
Huggins, M. L. (1941). J. Amer. Chem. Soc. 63, 66.
Huggins, M. L. (1954). J. Phys. Chem. 58, 1141.
Huggins, M. L. (1968). Inorg. Chem. 7, 2108.

Jamieson, P. B. \& Glasser, L. S. D. (1966). Acta Cryst. 20, 688.

Jamieson, P. B. \& Glasser, L. S. D. (1967). Acta Cryst. 22, 507.

Jost, K.-H. \& Hilmer, W. (1966). Acta Cryst. 21, 583.
Lewis, G.N. (1916). J. Amer. Chem Soc. 38, 762.
Megaw, H. D. (1952). Acta Cryst. 5, 477.
Pauling, L. \& Huggins, M.L. (1934). Z. Kristallogr. 87, 205.
Pauling, L. (1939). The Nature of the Chemical Bond. Ithaca: Cornell Univ. Press.

The Crystal Structure of $\left(\mathrm{CrO}_{3}\right)_{\infty}$

By J.S.Stephens* and D.W.J.Cruickshank
Chemistry Department, University of Manchester Institute of Science and Technology, Manchester M60 1QD, England

(Received 3 November 1969)

Abstract

The crystal structure of CrO_{3} has been refined with new three-dimensional X-ray data from a linear diffractometer to an R index of 0.0234 . The structure consists of infinite chains of corner-sharing CrO_{4} tetrahedra running parallel to the c axis. The bridging $\mathrm{Cr}-\mathrm{O}$ bond length is $1.748 \AA$ and the terminal $\mathrm{Cr}-\mathrm{O}$ length is $1.599 \AA$. The angle at the bridging oxygen atom is 143°. Comparison with other accurately determined structures shows that the angles subtended at tetrahedral chromium(VI) atoms are considerably more regular than those at the sulphur or selenium atoms in analogous compounds.

Introduction

The crystal structure of chromium trioxide was first determined by Byström \& Wilhelmi (1950) who collected two-dimensional photographic data. Vaughan (1955) and Hanic \& Štempelová (1960) undertook further refinement of the structure using the original (1950) data. The basic structure was confirmed as being made up of linear chains of corner-sharing CrO_{4} tetrahedra. Unfortunately the limited data did not yield accurate molecular dimensions. A complete redetermination with three-dimensional X-ray diffraction data was therefore undertaken as part of a general study of the structures of tetrahedral oxyanions.

Experimental

Crystals of CrO_{3} were grown near the surface of a saturated solution of $\mathrm{Na}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$ in concentrated $\mathrm{H}_{2} \mathrm{SO}_{4}$. The growth was at room temperature over a period of two days during which water vapour was absorbed from the air. These crystals were dark red and grew in the form of long, nearly cylindrical, needles. A small single crystal, 2 mm in length and 0.2 mm in diameter, was selected and sealed inside a 0.3 mm Lindemannglass capillary. The previously reported crystal data

[^0](Byström \& Wilhelmi, 1950), as listed in Table 1, were used throughout this work.

Table 1. Crystal data
Chromium trioxide, CrO_{3}, F.W. $=100 \cdot 01$
Orthorhombic: $a=4.789(5), b=8.557$ (5), $c=5.743$ (4) \AA
$U=235 \cdot 4$ (5) $\AA^{3}, D_{x}=2 \cdot 82 \mathrm{~g} . \mathrm{cm}^{-3}$, $F(000)=192$
Absorption coefficient: $47.4 \mathrm{~cm}^{-1} \quad(\lambda=0.7107 \AA)$
Absent spectra: $h k l$ when $h+k$ is odd $h 0 l$ when l is odd
Space group: $C 2 \mathrm{~cm}$

The intensity data were measured on a Hilger-Watts linear diffractometer, using Mo $K \alpha$ radiation and balanced $\mathrm{Zr} / \mathrm{Sr}$ filters with the crystal mounted to rotate around the needle caxis. All reflexions within a hemisphere in reciprocal space out to a maximum $\sin \theta / \lambda$ value of 0.92 were recorded. The intensities of sym-metry-equivalent reflexions were averaged.

In addition, precession photographs of the ($h h l$) and ($h, 3 h, l$) planes were taken with Mo $K \alpha$ radiation and the intensities of these reflexions measured with the aid of a Joyce-Loebl 'flying spot' microdensitometer. A total of 334 independent reflexions were measured, 13 of which did not give a significant number of counts on the diffractometer and were not visible on the photographs. These reflexions were assigned appropriate 'threshold' intensities.

Lorentz and polarization corrections were applied in the usual manner. As μR for this crystal was $0 \cdot 47$, absorption corrections were not considered necessary.

Refinement

All least-squares (l.s.) refinement was undertaken with the full-matrix program written by J.S.Stephens for the ATLAS computer. The scattering factors for Cr^{3+} and O^{-}were derived by 4 -point interpolation from the values given in International Tables for X-ray Crystallography (1962). The parameters of Vaughan (1955) were taken as the starting point for the refinement. The first stages of refinement used isotropic vibration parameters and 11 separate scale factors. The weighting scheme of Cruickshank (1961a) was used, with the parameters selected to yield an approximately constant $\left\langle w \Delta^{2}\right\rangle$ over the range of $\left|F_{o}\right|$. It became apparent that several of the stronger reflexions were quite seriously
affected by secondary extinction. Extinction coefficients \dagger (Zachariasen, 1963) were refined in the l.s. program in the manner advocated by Larson (1967). In this method, the value of F_{c}^{*} including the extinction correction is given by

$$
\begin{equation*}
F_{c}^{*}=F_{c} \cdot\left(1+g \cdot \beta(2 \theta) \cdot\left|F_{c}\right|^{2}\right)^{-1 / 2}, \tag{1}
\end{equation*}
$$

with

$$
\begin{equation*}
\beta(2 \theta)=L \cdot A \cdot\left(\mathrm{~d} A^{*} / \mathrm{d} \mu\right) \cdot\left(1+\cos ^{4} 2 \theta\right) /\left(1+\cos ^{2} 2 \theta\right), \tag{2}
\end{equation*}
$$

where L is the Lorentz factor. The term $A .\left(\mathrm{d} A^{*} / \mathrm{d} \mu\right)$ is very nearly constant over the range of θ for the data

[^1]Table 2. Final parameters from the least-squares refinement

	x / a	y / b	z/c			
Cr	$0 \cdot 0$	$0 \cdot 40324$ (5)	$0 \cdot 25$			
O(1)	$0 \cdot 1159$ (8)	$0 \cdot 5$	0.0			
$\mathrm{O}(2)$	$0 \cdot 1245$ (14)	$0 \cdot 2323$ (5)	$0 \cdot 25$			
$\mathrm{O}(3)$	$0 \cdot 3284$ (9)	$0 \cdot 3922$ (5)	$0 \cdot 25$			
	$U_{11}\left(\AA^{2}\right)$	$U_{22}\left(\AA^{2}\right)$	$U_{33}\left(\AA^{2}\right)$	$U_{12}\left(\AA^{2}\right)$	$U_{13}\left(\AA^{2}\right)$	$U_{23}\left(\AA^{2}\right)$
Cr	$0 \cdot 0325$ (3)	$0 \cdot 0265$ (3)	$0 \cdot 0130$ (5)	$0 \cdot 0000$ (4)	$0 \cdot 0$	
$\mathrm{O}(1)$	0.0442 (13)	0.0493 (17)	$0 \cdot 0164$ (9)	$0 \cdot 0$	$0 \cdot 0$	$0 \cdot 0075$ (9)
$\mathrm{O}(2)$	0.0541 (24)	0.0295 (15)	0.0456 (18)	0.0093 (17)	$0 \cdot 0$	0.0
$\mathrm{O}(3)$	0.0373 (16)	0.0548 (25)	$0 \cdot 0430$ (22)	0.0055 (14)	$0 \cdot 0$	$0 \cdot 0$

Table 3. Observed and calculated structure factors
The third and fourth columns are $10\left|F_{o}\right|$ and $10\left|F^{*}{ }_{c}\right|$ respectively. The 13 unobserved reflexions are preceeded by asterisks.

because of the small value of μR, and was set equal to unity.

The refinement was continued with anisotropic vibration parameters for all atoms. The final values of the conventional R index ($\left.R_{1}=\boldsymbol{\Sigma}|\Delta| / \Sigma\left|F_{o}\right|\right)$, and the 1.s. residual ($R_{2}=\left[\Sigma w \Delta^{2} / \Sigma w\left|F_{0}\right|^{2}\right]^{1 / 2}$) were 0.0234 and 0.0286 respectively. Weights for the last cycle were calculated as $w=1 /\left(0 \cdot 187-0.0333\left|F_{o}\right|+0.00167\left|F_{o}\right|^{2}\right)$. In this cycle the largest parameter shift was less than 1% of its estimated standard deviation (e.s.d.) and the average shift/error was $0 \cdot 004$. All 13 'unobserved' reflexions had $\left|F_{c}\right|<\left|F_{\text {threshold }}\right|$ and were therefore given zero weight in the refinement.

The final values of the positional and vibrational parameters are listed in Table 2, together with their e.s.d.'s derived from the inverse 1.s. matrix. Table 3 shows the agreement between the observed structure factors and those calculated with the parameters of Table 2.

Discussion

The structure consists of infinite chains of cornersharing CrO_{4} tetrahedra running in the \mathbf{c} direction, as shown in Figs. 1 and 2. The tetrahedra lie on mirror planes, and adjacent tetrahedra in each chain are related by twofold axes which pass through the bridging oxygen atoms $\mathrm{O}(1)$. Adjacent chains are not joined by chemical bonds and are held together only by van der Waals forces. The preferential growth of CrO_{3} in the c direction to produce cylindrical crystals is thus readily understood.

Each oxygen atom is surrounded by 12 other oxygen atoms, including those within the same tetrahedron. The distances between oxygen atoms from different tetrahedra lie in the range 2.995 to $3.660 \AA$. The $\mathrm{O} \cdots \mathrm{O}$ distances within the tetrahedron fall between 2.564 and $2.871 \AA$. These distances, uncorrected for thermal motion, are shown in Table 4 and Fig. 2.

An analysis of the vibration parameters of the atoms shows that the chain is not rigid, as $\mathrm{O}(1)$ has an appreciable U_{11} value. Motion of $\mathrm{O}(1)$ parallel to a cannot arise from a torsional oscillation of the chain as a whole, as can be seen from Fig. 2. The motion of $\mathrm{O}(1)$ is due primarily to a flexing of the $\mathrm{Cr}-\mathrm{O}-\mathrm{Cr}$ bond angle of 143°. This type of motion does not cause an apparent change in the equilibrium $\mathrm{Cr}-\mathrm{O}(1)$ bond length, and no thermal correction to this distance is necessary. The terminal oxygen atoms, $\mathrm{O}(2)$ and $\mathrm{O}(3)$, have a motion which is consistent with libration about a point close to the chromium atom, and a libration correction (Cruickshank, 1961b) is in order here. This reasoning forms the basis for the 'corrected' bond lengths quoted in Table 5.
From Table 5 it can be seen that the bridging $\mathrm{Cr}-\mathrm{O}$ (1) bond distance of $1.748 \AA$ is $0.15 \AA$ greater than the mean terminal distance of $1.599 \AA$. This difference may be due to a difference of π-bond order (Cruickshank, 1961c). The angle at the bridging oxygen atom is 143°. All O-Cr-O angles are within 0.9° of the ideal
tetrahedral value of $109 \cdot 5^{\circ}$ despite the difference between the terminal and bridging $\mathrm{Cr}-\mathrm{O}$ bond lengths. A similar situation is found in $\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$ (Brandon \&

Fig. 1. Projection of the structure down the b axis showing the parallel non-bonded chains of linked tetrahedra.

Fig.2. Projection of the structure down the c axis (chain direction). Each oxygen atom has 12 near-neighbour contacts with other oxygen atoms. These contacts are shown with solid arrows. Double arrowheads indicate two symmetryequivalent contacts superimposed in this projection. Concentric circles similarly denote superimposed atoms.

Brown, 1968) where the difference between terminal and bridging bond lengths is $0 \cdot 16 \AA$ and the $\mathrm{O}-\mathrm{Cr}-\mathrm{O}$ angles have only a 1.3° deviation from their mean of $109 \cdot 5^{\circ}$. This close constancy of the angles subtended at the central chromium atom is in direct contrast to the analogous sulphates, $\mathrm{S}_{3} \mathrm{O}_{9}$ (McDonald \& Cruickshank, 1967) and $\mathrm{K}_{2} \mathrm{~S}_{2} \mathrm{O}_{7}$ (Lynton \& Truter, 1960), where the $\mathrm{O} \cdots \mathrm{O}$ distances are approximately constant and it is the $\mathrm{O}-\mathrm{S}-\mathrm{O}$ angles which show a wide spread of values. This difference in behaviour cannot be ascribed solely to $\mathrm{O} \cdots \mathrm{O}$ overcrowding in the sulphates and to the absence of this overcrowding in the chromates, as this sulphate-like behaviour is also found in $\mathrm{Se}_{4} \mathrm{O}_{12}$ (Mijlhoff, 1965) where the bond distances are very similar to those in CrO_{3}. Summaries of the molecular geometries of these compounds are given in Table 6.

It would seem that the strength of the tetrahedral bonding decreases more rapidly for chromates than for sulphates or selenates when the angles at the central atom are distorted from the ideal tetrahedral value. A simple explanation of this can be seen from a valence-
bond picture of the σ-bonding. In this representation the primary hybridization of sulphur (and selenium) would be $s p^{3}$, but that of chromium would be $d^{3} s$. A tetrahedrally directed $d^{3} s$ orbital is 'narrower' than an $s p^{3}$ orbital, and a distortion of the bonding angle from the ideal value of $109 \cdot 5^{\circ}$ will result in a greater reduction in the overlap between a $d^{3} s$ hybrid and the ligand's σ-orbitals than would occur in the case of $s p^{3}$ hybridization. On this basis one would also expect selenates to show angular distortions to a greater extent than chromates. An insufficient number of condensed selenate structures have been reported in the literature to provide complete confirmation, but the results for $\mathrm{Se}_{4} \mathrm{O}_{12}$ (see Table 6) show encouraging agreement.

As a final note, it is of interest to compare the average vibrationally-corrected $\mathrm{Cr}-\mathrm{O}$ bond lengths for isolated CrO_{4}^{2-} groups, singly-linked dichromate ions $\left(\mathrm{Cr}_{2} \mathrm{O}_{7}\right)^{2-}$, and the doubly-linked CrO_{3} chains. For $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{CrO}_{4}$ (Stephens \& Cruickshank, 1970) the mean $\mathrm{Cr}-\mathrm{O}$ bond length is $1.658 \AA$. In $\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$ (Brandon \& Brown, 1968) the mean distance is $1.668 \AA$ and in CrO_{3} it is $1.688 \AA$. The regular increase in the average bond

Table 4. Oxygen \cdot oxygen contact distances
The distances above the broken lines are between oxygen atoms in the same tetrahedron. None of these distances have been corrected for thermal motion.

	Distance (\AA)		Distance (\AA)		Distance (\AA)
$\mathrm{O}(1) \cdots \mathrm{O}\left(1^{\prime}\right)$	(2) $2 \cdot 871$	$\mathrm{O}(2) \cdots \mathrm{O}(1)$	(2) 2.704	$\mathrm{O}(3) \cdots \mathrm{O}(2)$	$2 \cdot 564$
$\mathrm{O}(1) \cdots \mathrm{O}(2)$	(2) 2.704	$\mathrm{O}(2) \cdots \mathrm{O}(3)$	$2 \cdot 564$	$\mathrm{O}(3) \cdots \mathrm{O}(1)$	(2) $2 \cdot 728$
$\mathrm{O}(1) \cdots \mathrm{O}(3)$	(2) $2 \cdot 728$	- - -	- - -	- - - -	-
- - - -	- - -	$\mathrm{O}(2) \cdots \mathrm{O}\left(3^{\prime}\right)$	2.955	$\mathrm{O}(3) \cdot \cdots \mathrm{O}\left(2^{\prime}\right)$	2.995
$\mathrm{O}(1) \cdot \mathrm{O}\left(3^{\prime}\right)$	(2) $3 \cdot 160$	$\mathrm{O}(2) \cdots \mathrm{O}\left(3^{\prime \prime}\right)$	(2) 3.072	$\mathrm{O}(3) \cdots \mathrm{O}\left(2^{\prime \prime}\right)$	(2) 3.072
$\mathrm{O}(1) \cdots \mathrm{O}(2)$	(2) 3.456	$\mathrm{O}(2) \cdots \mathrm{O}\left(1^{\prime}\right)$	(2) 3.456	$\mathrm{O}(3) \cdots \mathrm{O}\left(1^{\prime}\right)$	(2) $3 \cdot 160$
$\mathrm{O}(1) \cdots \mathrm{O}\left(3^{\prime \prime}\right)$	(2) $3 \cdot 660$	$O(2) \cdots O\left(2^{\prime}\right)$	(4) 3.751	$O(3) \cdots O\left(3^{\prime}\right)$	(2) $3 \cdot 413$
				$\mathrm{O}(3) \cdots \mathrm{O}\left(1^{\prime \prime}\right)$	(2) $3 \cdot 660$

Table 5. Distances and angles within the chromate tetruhedron

	Uncorrected distance	Corrected distance		Angle
$\mathrm{Cr}-\mathrm{O}(1)$	(2) 1.748 (2) \AA	1.748 £	$\mathrm{O}(1)-\mathrm{Cr}-\mathrm{O}\left(1^{\prime}\right)$	$110.5(1)^{\circ}$
$\mathrm{Cr}-\mathrm{O}(2)$	1.579 (5)	1.603	$\mathrm{O}(1)-\mathrm{Cr}-\mathrm{O}(2)$	(2) 108.6 (1)
$\mathrm{Cr}-\mathrm{O}(3)$	1.576 (5)	1.594	$\mathrm{O}(1)-\mathrm{Cr}-\mathrm{O}(3)$	(2) 110.2 (2)
			$\mathrm{O}(2)-\mathrm{Cr}-\mathrm{O}(3)$	108.7 (3)
$\mathrm{O}(1) \cdots \mathrm{O}\left(1^{\prime}\right)$	2.871	2.871		
$\mathrm{O}(1) \cdots \mathrm{O}(2)$	(2) 2.704	2.723	$\mathrm{Cr}-\mathrm{O}(1)-\mathrm{Cr}$	$143 \cdot 0$ (2)
$\mathrm{O}(1) \cdots \mathrm{O}(3)$	(2) 2.728	2.743		
$\mathrm{O}(2) \cdots \mathrm{O}(3)$	$2 \cdot 564$	2.598		

Table 6. Summaries of the geometries of $\mathrm{X}_{2} \mathrm{O}_{7}$ and XO_{3} compounds
The values following \pm are root-mean-square deviations from the mean.

Average values	$\mathrm{K}_{2} \mathrm{~S}_{2} \mathrm{O}_{7}$	$\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$	$\mathrm{S}_{3} \mathrm{O}_{9}$	$\left(\mathrm{CrO}_{3}\right)_{r}$	$\mathrm{Se}_{4} \mathrm{O}_{12}$
Bridge $\mathrm{X}-\mathrm{O}(\AA)$	1.645	1.786	$1 \cdot 619$	1.748	1.77
Terminal $\mathrm{X}-\mathrm{O}$ (\AA)	1.437	1.629	1.395	1.599	1.55
Difference (\AA)	$0 \cdot 21$	$0 \cdot 16$	$0 \cdot 22$	$0 \cdot 15$	$0 \cdot 22$
$\angle \mathrm{X}-\mathrm{O}-\mathrm{X}\left({ }^{\circ}\right)$	124.2	125.8	121.5	143.0	123.2
Average X-O (Å)	1.489	1.668	1.507	1.688	1.66
Average $\mathrm{O} \cdots \mathrm{O}(\AA)$	2.43 ± 0.03	$2 \cdot 70 \pm 0.06$	$2 \cdot 44 \pm 0 \cdot 04$	2.71 ± 0.12	2.69 ± 0.08
$\ldots \mathrm{O}-\mathrm{X}-\mathrm{O}\left({ }^{\circ}\right.$)	$109 \cdot 5 \pm 5 \cdot 0$	$109 \cdot 5 \pm 1 \cdot 3$	108.9 ± 9.0	$109 \cdot 5 \pm 0 \cdot 8$	$108.9 \pm 5 \cdot 0$

length as the condensation of the chromates increases is undoubtedly significant, and may be compared with similar increases noted for sulphates (Cruickshank \& Robinson, 1966).

The authors' thanks are due to Mrs L.A. Wood, formerly of the Glasgow University Chemistry Department, for operating the linear diffractometer. In addition one of us (J.S.S.) would like to thank the University of Glasgow and the National Research Council of Canada for fellowships awarded during the course of this research.

References

Brandon, J. K. \& Brown, I. D. (1968). Canad. J. Chem. 46, 933.

Byström, A. \& Wilhelmi, K.-A. (1950). Acta Chem. Scand. 4, 1131.
Cruickshank, D. W. J. (1961a). In Computing Methods and the Phase Problem. Oxford: Pergamon Press.
Cruickshank, D. W. J. (1961b). Acta Cryst. 14, 896.
Cruickshank, D. W. J. (1961c). J. Chem. Soc., p. 5486.
Cruickshank, D. W. J. \& Robinson, E. A. (1966). Spectrochim. Acta, 22, 55.
Hanic, F. \& Śtempelová, D. (1960). Chem. Zvesti. 14, 156.
International Tables for X-ray Crystallography (1962). Vol. III. Birmingham: Kynoch Press.

Larson, A. C. (1967). Acta Cryst. 23, 664.
Lynton, H. \& Truter, M. R. (1960). J. Chem. Soc., p. 5112.
McDonald, W. S. \& Cruickshank, D. W. J. (1967). Acta Cryst. 22, 48.
Mijlhoff, F. C. (1965). Acta Cryst. 18, 795.
Stephens, J. S. \& Cruickshank, D. W. J. (1970). Acta Cryst. B26.
Vaughan, P. A. (1955). Structure Reports, 19, 368.
Zachariasen, W. H. (1963). Acta Cryst. 16, 1139.

Acta Cryst. (1970). B26, 226

The Crystal Structure of (+ $)_{\mathrm{D}}-\left(N, N, N^{\prime}, N^{\prime}-\right.$ Tetrakis-(2'-aminoethyl)-1,2-diaminoethane) cobalt(III) Hexacyanocobaltate(III) Dihydrate

By Akiko Muto, Fumiyuki Marumo and Yoshiniko Saito
The Institute for Solid State Physics, The University of Tokyo, Roppongi, Minato-ku, Tokyo, Japan

(Received 24 July 1969)

Abstract

(+) ${ }_{\mathrm{D}}-\left(N, N, N^{\prime}, N^{\prime}\right.$-Tetrakis(2'-aminoethyl)-1,2-diaminoethane)cobalt(III) hexacyanocobaltate(III) dihydrate, $(+)_{D}-[\mathrm{Co}($ penten $)]\left[\mathrm{Co}(\mathrm{CN})_{6}\right] .2 \mathrm{H}_{2} \mathrm{O}$, forms orthorhombic crystals with $a=15 \cdot 471, b=16 \cdot 036$, $c=9.253 \AA$ and four formula units in the unit cell, in space group $P 2_{1} 2_{1} 2_{1}$. The structure has been refined by least-squares methods with anisotropic temperature factors. The structure consists of complex cations, $[\mathrm{Co}(\text { penten })]^{3+}$, complex anions, $\left[\mathrm{Co}(\mathrm{CN})_{6}\right]^{3-}$ and water molecules. The central cobalt atom of the cation is bonded octahedrally to the six nitrogen atoms of a penten molecule. Three out of the five chelate rings form a girdle about the cobalt atom. Approximately at right angles to the girdle and to one another are two other five-membered chelate rings. All the five-membered chelate rings are not planar. Their conformations are not the same, two of them being enantiomeric with the other three. The absolute configuration of the complex ion, $\left({ }_{+}\right)_{D}-[C o(p e n t e n)]^{3+}$ can be designated as skew chelate pairs, $\Lambda \Delta \Lambda$. When applied to this case, the method of ring pairing, together with the octant rule, correctly predicted the sign of the circular dichroism band.

Introduction

$N, N, N^{\prime}, N^{\prime}$-Tetrakis(2'-aminoethyl)-1,2-diaminoethane (I), penten, can function as a sexidentate, giving complexes structurally related to those derived from ethylenediaminetetra-acetic acid (EDTA) (Wiekliem \& Hoard, 1959).

(I)

Recently the cobalt(III) complex, $[\mathrm{Co}$ (penten) $] \mathrm{Br}_{3}$, was resolved and the optical properties were examined by Yoshikawa, Fujii \& Yamasaki (1967). They confirmed the previous results (Schwarzenbach \& Moser, 1953: Emmenegger \& Schwarzenbach, 1966). However, the absolute configuration proposed by Yoshikawa, Fujii \& Yamasaki (1967) and by Gollogly \& Hawkins (1966) is enantiomeric with that proposed by Emmenegger \& Schwarzenbach (1966) and by Mason \& Norman (1965). Therefore it was highly desired to establish the absolute configuration of the complex ion, $[\mathrm{Co}$ (penten) $]^{3+}$. In this paper, the result of the crystal structure analysis of [Co(penten)] $\left[\mathrm{Co}(\mathrm{CN})_{6}\right] \cdot 2 \mathrm{H}_{2} \mathrm{O}$ and the relationship between the absolute configuration of opti-

[^0]: * Present address: Computing Centre, McMaster University, Hamilton, Ontario, Canada.

[^1]: \dagger In this case, two extinction coefficients are required as the intensity data were collected by two separate techniques. The difficulty is caused by the two different Lorentz factors. A similar situation will arise for sets of relative intensity data collected about two (or more) different axes unless the absorption is negligible or the crystal is spherical in shape.

